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Abstract

In this article, we consider how semantics of action verlodmagrounded
on motion tracking data. We present the basic principlesragdirements
for grounding of verbs through case studies related to humarement. The
data includes high-dimensional movement patterns andilitig expressions
that people have used to name these movements. We discusssspes
and possibilities related to symbol grounding. As a corioluswe find the
grounding to be useful when reasoning about the meaning ods\and re-
lationships between them within one language and poténtido between
languages.

1 Introduction

The basic scientific question behind this article is how tmpatationally model
the interrelated processes of interpreting natural lapguend perceiving move-
ment in multimodal real world contexts. Namely, an impottaroblem in natural
language processing and in computer science in generaltigitmost cases com-
puter systems processing symbols or language do not hagssatocthe phenomena
being referred to. In contrast, humans can readily assoedgtressions with their
non-linguistic experiences and actions in the world. Faetdance, we know the
different interpretations of color red in expressions “s&dt”, “red skin” and “red
wine” or the phrase “a long jump” may refer to very differehtnigs depending
on the context. As a direct consequence, computationatrsgstan only reason
about the symbols themselves rather than about the groundading or external
references of those symbols. However, if we want machinésarm and use lan-
guage as it is actually used by humans, we have to take intuatthat language
is fully understood only through its use in linguistic andltimnodal contexts [1].
In this article, we consider a seemingly simple domain of lsghgrounding,
naming human movement. It is, however, complex enough tortmdrivial case
which is also illustrated by the fact that different langeaglivide the space of
body-related expressions in different ways [2]. Moreopegple may have differ-
entinterpretations even regarding what they call “runtifjggging” or “walking”



in less prototypical cases. Studying these differencesabled by having access
to the actual patterns of movement.

Extracting semantic information from the statistical regities in large text
corpora is howadays commonplace. One obvious reason fog @sistatistical
approach is cost-effectiveness: models of language camilienith less human
effort than when traditional means are used. While statisénalysis of word oc-
currences and other linguistic constructions in theiruaktontexts has proven to
be useful, there is a limit to how much can be inferred frontstexly, and therefore
obtaining data of words in their multimodal contexts is apariant research topic.
This kind of external contextualization is often referreds symbol grounding [3].

Research on symbol grounding is multidisciplinary and ifadeted. Related
to motion tracking, successful systems that achieve goaskification results in-
clude identification of movement types [4], manners of mg\] and the gender
from walking movements [6]. The issue is, of course, reléiramobotics [7, 8]. In
cognitive science, symbol grounding and embodiment is goitant theme (cf.,
e.g., [9, 10, 11, 12, 13]). In a classical work, Bailey depeld a computational
model of the role of motor control in the acquisition of aaticerbs [14].

We are aware of the breadth and depth of the underlying mighisal [15] and
methodological issues. In this article, we wish to addresring human move-
ments as a concrete, limited but non-trivial case relatedutiimodally grounded
natural language processing. In order to study how peopteerdifferent human
movements, we have used motion tracking to obtain data inlhwékeletons move
on the screen. Using this data, we conducted two case studid¢ise first study,
we asked people to classify movements to a limited numbertsgories. The
results of this classification task, serving as a feasjhbditidy, are reported in the
next section.

In the second case study, we asked people to describe thesemeats with
their own words. It was important that the question was opwated because we
wished to study the naming of movements which is differeatfrclassification.
In naming, the labels given typically follow a Zipfian di&wition [16]. The results
of this case study are reported discussed in Section 3.

2 Grounding through motion capture

The motion tracking has been conducted using OptiTrack doBapture system
and the ARENA software, developed by NaturalPoint, Inc. A&orded 16 min-
utes of human motion which was manually annotated with thieviing labels:

jump, sit down, sitting, stand up, standing, turn left, ttight, walking and waving
hand. The labels were allowed to overlap as for example wal&nd waving hand



can be done at the same time.

Four types of features were extracted from the data (seed-igu The first
type was absolute values of velocities of all the body partse second type was
distances between the end parts of the limbs. The third wasitsevectors of the
end parts of the limbs. The last type was coordinate positadrthe end parts of
the limbs. To make the velocity vectors and positions usatdehad to center the
coordinate system to the hips of the character and rotatehtheacter to always
face the same direction. This resulted in 72 feature dinoassin the first case
study. We averaged the values of the features over 0.25 dedorget the final
values used in the classification.
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Grounding verbs requires associating them with pattermaaifon based fea-
tures. A good way to ensure that the used features are notamiypm numbers is
to see how well the features can be used in classifying puslyainseen motions.
To classify the data we usdédnearest neighbors with a Euclidean distance metric.
The classification was tested on two minutes of motion that ma used in the
training set with results at the same level as obtainedesdni others [4, 5, 6]. In
classification, the transition motions between two verbsewbe main problem.
The classifier tried to forcible classify the motion when thest natural option
would be not giving a class at all as the transitions may notspond to any verb.
One reason for the good performance lies in the well-salefgtatures. When the
training samples are plotted along the first two principahponents (see Figure 2),
it becomes evident that many of the classes are separatée biged features.

The features form a space where all individual frames of danatan be pro-
jected. As two consecutive frames of motion are always aindlue to physical
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Figure 3: On the left hand side, motion of a character (ajgitt(b) standing up,
(c) standing, (d) turning left and (e) walking (left), and thre right hand side, the
trajectory formed by the frames plotted on the first and seéqmincipal compo-
nent.

restrictions, motions can be plotted as trajectories infa¢ure space. This is
shown in Figure 3, where a motion starting from sitting, gothrough standing
up, standing and walking, is plotted along the first two gpatcomponents of the
feature space.

The separation by the two principal components is not cotals the data is
inherently high dimensional as can be seen in Figure 4. Thedighows that more
than 10 principal components are needed in order to expld 8f the variance
in the data.

The fact that many labels can be valid for a motion simultasgois a chal-
lenge for using the features of the classification as distameasures. For example,
waving hand can be done while walking, sitting or standinbisTs visible in the
training samples used for those classes in Figure 5. As iwgaliand’ appears in
several separate clusters, the mean distance between dtlaedlabels does not
reflect the real relations between the labels. Therefoeepterlap between labels
should be analyzed before similarity of the labels.

3 Modeding relations between verbs

In order to have a fine-grained collection of movements, wedésactors to perform
walking, limping and running in various styles. These moeata were blended
in three steps including alignment, time warping and irg&gion. In time warp-
ing, the motions were synchronized. In the third step, trerdioates of the root
joints were interpolated linearly and the joint rotationsrevinterpolated in a four-
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coordinate system [17]. The blending enabled us to havegaramumber of vari-
ations of the movements. The people were asked to descébmadlrement with
one verb or phrase. The task was to label 24 to 124 videos wiheredeos lasted
from 3 to 12 seconds. Each video was portraying a stick figgpeasentation.

We analyzed the questionnaire results where 22 personsamaeidithe move-
ments in Finnish language. We used the self-organizing r8&p\) [18] algo-
rithm to conduct a mapping from the 602-dimensional movdrapace into a 2-
dimensional display. The movement determines the maptsteuand structure
of labels is obtained by including them in the input vectothwa small weight.
To illustrate the outcome, we chose 12 verbs to be analyzedone detail. This
map of labels is shown Fig 6. With one exception, each verlsss@ated with a
contiguous area on the map. For instance, the verb “wallddated on the upper
side of the map and the verb “run” on the lower left corner. Fighows exam-
ples of underlying movement features that have determimedrganization of the
map. The area for running in Fig 6 coincides with the featunedn acceleration
of hips” in Fig 7. The union “running” and “jogging” coincidewith the distribu-
tion of features “mean absolute velocity of hips” and “meésdute velocity of
abdomen”.

In many cases, the association between the labels andnsattemovement is
not one-to-one but require consideration of a reasonaldy laumber of features.
On the other hand, the vector space for the associationséh fower in dimen-
sionality than the pixel patterns over time in the originaleos. This is thanks
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Figure 6: The distribution of 12 verbs on a self-organizingpnof movements. A
light shade denotes a high value of each verb.

to the motion tracking system that compresses the origiegl kigh dimensional

feature space into a large number of meaningful variablesthé general case,
it remains a challenge how to conduct the pattern recogniind dimensionality

reduction in such a way that relevant features are includetht associations. In
many early studies the low-level representations werethasenanually encoded
structures (cf., e.g., [14]). In order to develop large scdlutions, the process
should, however, be as automatic as possible. Due to vafeipplications that

may require different kinds of feature sets for same donihafeatures extraction
process needs to be task-dependent [19].

4 Conclusions and discussion

We are interested in answering the scientific question of ttoenable machines
to have a increasingly common ground with humans for astiegilanguage with
perceptual patterns. In the following, we discuss two syingbounding themes.

4.1 Multimodally grounded language technology

Through multimodally grounded language technology, mofgust and correct
manipulation of linguistic data becomes possible, e.gemuiesolving ambiguities
or when needing deeper inference. Application areas iechuilding animations
using linguistic instructions and coaching of skills.

What centrally constrains communication is the dissintilasf the conceptual
systems of the discussants. An important aspect of bettratanding of human
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Figure 7: The distribution of 6 features out of 602 on the-seffanizing map of
movements. A light shade denotes a high value of each feature

expression is, we believe, capturing human conceptuaizabf the environment
in which the co-operation is to take place. The subjectiymeeisof interpretation
can be analyzed when the use of symbols is considered inatiffeontexts by a
number of individuals [20].

4.2 Multimodally grounded translation

It has earlier been demonstrated that the association wgtlavinformation can
be used even to find parallels between different languadds A2 analysis of the
similarities in the visual appearance of some object carsbd to find a conceptual
link between a word in one and another language. This is gitalbto ostensive
definition, based on pointing out examples. In the futureplaa to collect labeled
data in multiple languages. This enables developing a mgdpinction between
action verbs in different languages based on the commomdrou

Acknowledgments

We gratefully acknowledge the financial support by Academizinland for the Multi-
modally Grounded Language Technology project (254104)k@GSE graduate school
that have made this research possible. We also wish to thartodleagues in the project
who have helped in conducting the research in various waysdimg Prof. Tapio Takala,
Dr. Jorma Laaksonen, Dr. Markus Koskela, Dr. Harri Valpdha, K. Lagus, Ms. Xi
Chen, Mr. Paul Wagner and Mr. Oskar Kohonen. The insighthisydrea have also pro-
gressed thanks to collaborations with Prof. Peter Géarder{faund University, Sweden)
and Prof. Lars Kai Hansen (DTU, Denmark) and their teams.



References

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]
(9]

(10]

(11]
(12]
(13]
(14]
(15]

(16]
(17]

(18]
(19]

(20]

(21]

Hormann, H.: Meaning and Context. Plenum Press, New Y{b9i86)

Choi, S., Bowerman, M.: Learning to express motion esantEnglish and Korean: The
influence of language-specific lexicalization patternsgi@ion 41(1) (1991) 83-121

Harnad, S.: The symbol grounding problem. Physicé2§1990) 335-346

Pavlovic, V., Rehg, J., MacCormick, J.: Learning switching lineardels of human motion.
In: Advances in Neural Information Processing Systems2@01) 981-987

G.W. Taylor, G.E. Hinton, S.R.: Modeling human motioringsbinary latent variables. In:
Advances in Neural Information Processing Systems 19.10845-1352

Davis, J., Gao, H.: Gender recognition from walking mosts using adaptive three-mode
PCA. In: Computer Vision and Pattern Recognition WorksH{@p04)

Roy, D.: Grounding words in perception and action: comagional insights. Trends in
cognitive science§(8) (2005) 389—-396

Williams, M.A., McCarthy, J., Gardenfors, P., Stant@n, Karol, A.: A grounding framework.
Autonomous Agents and Multi-Agent Systed®3) (2009) 272—296

Lakoff, G., Johnson, M.: Philosophy in the Flesh - The Ewmiled Mind and its Challenge to
Western Thought. New York: John Wiley (1999)

Glenberg, A.M., Robertson, D.A.: Symbol grounding andaning: A comparison of high-
dimensional and embodied theories of meaning. Journal ofongand languagé3(3) (2000)
379-401

Sun, R.: Symbol grounding: a new look at an old idea. ¢&uiphical Psycholog$3(2) (2000)
149-172

Vogt, P.: The physical symbol grounding problem. Caigei Systems Resear@{3) (2002)
429-457

Gardenfors, P., Warglien, M.: Using conceptual spacenodel actions and events. Journal
of semantic®9(4) (2012) 487-519

Bailey, D.. When Push Comes to Shove: A Computational®mf the Role of Motor
Control in the Acquisition of Action Verbs. PhD thesis, UCrBeley (1997)

Honkela, T.: Philosophical aspects of neural, prolistit and fuzzy modeling of language
use and translation. In: Proceedings of IJCNN 2007. (2083122886

Li, W.: Zipf’'s law everywhere. Glottometrics (2002) 14-21

Shoemake, K.: Animating rotation with quaternion esv SIGGRAPH Computer Graphics
19(3) (1985) 245-254

Kohonen, T.: Self-Organizing Maps. Springer (2001)

Ji, R., Yao, H., Liu, W., Sun, X., Tian, Q.: Task-depentlgisual-codebook compression.
Image Processing, IEEE Transactions2d(4) (2012) 2282—2293

Honkela, T., Raitio, J., Nieminen, I., Lagus, K., HolkeN., Pantzar, M.: Using GICA
method to quantify epistemological subjectivity. In: ProEIlJCNN 2012. (2012) 2875-2883

Sjoberg, M., Viitaniemi, V., Laaksonen, J., Honkela; TAnalysis of semantic information
available in an image collection augmented with auxiliaated In: Proc. of AIAI'06, Artificial
Intelligence Applications and Innovations, Springer (0600—608



