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Abstract

In this article, we consider how semantics of action verbs can be grounded
on motion tracking data. We present the basic principles andrequirements
for grounding of verbs through case studies related to humanmovement. The
data includes high-dimensional movement patterns and linguistic expressions
that people have used to name these movements. We discuss open issues
and possibilities related to symbol grounding. As a conclusion, we find the
grounding to be useful when reasoning about the meaning of words and re-
lationships between them within one language and potentially also between
languages.

1 Introduction

The basic scientific question behind this article is how to computationally model
the interrelated processes of interpreting natural language and perceiving move-
ment in multimodal real world contexts. Namely, an important problem in natural
language processing and in computer science in general is that in most cases com-
puter systems processing symbols or language do not have access to the phenomena
being referred to. In contrast, humans can readily associate expressions with their
non-linguistic experiences and actions in the world. For instance, we know the
different interpretations of color red in expressions “redskirt”, “red skin” and “red
wine” or the phrase “a long jump” may refer to very different things depending
on the context. As a direct consequence, computational systems can only reason
about the symbols themselves rather than about the groundedmeaning or external
references of those symbols. However, if we want machines tolearn and use lan-
guage as it is actually used by humans, we have to take into account that language
is fully understood only through its use in linguistic and multimodal contexts [1].

In this article, we consider a seemingly simple domain of symbol grounding,
naming human movement. It is, however, complex enough to be anon-trivial case
which is also illustrated by the fact that different languages divide the space of
body-related expressions in different ways [2]. Moreover,people may have differ-
ent interpretations even regarding what they call “running”, “jogging” or “walking”
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in less prototypical cases. Studying these differences is enabled by having access
to the actual patterns of movement.

Extracting semantic information from the statistical regularities in large text
corpora is nowadays commonplace. One obvious reason for using a statistical
approach is cost-effectiveness: models of language can be built with less human
effort than when traditional means are used. While statistical analysis of word oc-
currences and other linguistic constructions in their textual contexts has proven to
be useful, there is a limit to how much can be inferred from texts only, and therefore
obtaining data of words in their multimodal contexts is an important research topic.
This kind of external contextualization is often referred to as symbol grounding [3].

Research on symbol grounding is multidisciplinary and multifaceted. Related
to motion tracking, successful systems that achieve good classification results in-
clude identification of movement types [4], manners of moving [5] and the gender
from walking movements [6]. The issue is, of course, relevant in robotics [7, 8]. In
cognitive science, symbol grounding and embodiment is an important theme (cf.,
e.g., [9, 10, 11, 12, 13]). In a classical work, Bailey developed a computational
model of the role of motor control in the acquisition of action verbs [14].

We are aware of the breadth and depth of the underlying philosophical [15] and
methodological issues. In this article, we wish to address naming human move-
ments as a concrete, limited but non-trivial case related tomultimodally grounded
natural language processing. In order to study how people name different human
movements, we have used motion tracking to obtain data in which skeletons move
on the screen. Using this data, we conducted two case studies. In the first study,
we asked people to classify movements to a limited number of categories. The
results of this classification task, serving as a feasibility study, are reported in the
next section.

In the second case study, we asked people to describe these movements with
their own words. It was important that the question was open ended because we
wished to study the naming of movements which is different from classification.
In naming, the labels given typically follow a Zipfian distribution [16]. The results
of this case study are reported discussed in Section 3.

2 Grounding through motion capture

The motion tracking has been conducted using OptiTrack Motion Capture system
and the ARENA software, developed by NaturalPoint, Inc. We recorded 16 min-
utes of human motion which was manually annotated with the following labels:
jump, sit down, sitting, stand up, standing, turn left, turnright, walking and waving
hand. The labels were allowed to overlap as for example walking and waving hand

2



can be done at the same time.
Four types of features were extracted from the data (see Figure 1). The first

type was absolute values of velocities of all the body parts.The second type was
distances between the end parts of the limbs. The third was velocity vectors of the
end parts of the limbs. The last type was coordinate positions of the end parts of
the limbs. To make the velocity vectors and positions usable, we had to center the
coordinate system to the hips of the character and rotate thecharacter to always
face the same direction. This resulted in 72 feature dimensions in the first case
study. We averaged the values of the features over 0.25 seconds to get the final
values used in the classification.

a b c d

Figure 1: The types of the fea-
tures used in the classification in-
clude absolute velocities for each
body part (a), distances between
limb ends (b), velocity vectors of
limb ends (c), and positions of
limb ends (d).
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Figure 2: Training samples used the classi-
fication plotted along the first two principal
components.

Grounding verbs requires associating them with patterns ofmotion based fea-
tures. A good way to ensure that the used features are not onlyrandom numbers is
to see how well the features can be used in classifying previously unseen motions.
To classify the data we usedK nearest neighbors with a Euclidean distance metric.
The classification was tested on two minutes of motion that was not used in the
training set with results at the same level as obtained earlier by others [4, 5, 6]. In
classification, the transition motions between two verbs were the main problem.
The classifier tried to forcible classify the motion when themost natural option
would be not giving a class at all as the transitions may not correspond to any verb.
One reason for the good performance lies in the well-selected features. When the
training samples are plotted along the first two principal components (see Figure 2),
it becomes evident that many of the classes are separated by the used features.

The features form a space where all individual frames of a motion can be pro-
jected. As two consecutive frames of motion are always similar due to physical
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Figure 3: On the left hand side, motion of a character (a) sitting, (b) standing up,
(c) standing, (d) turning left and (e) walking (left), and onthe right hand side, the
trajectory formed by the frames plotted on the first and second principal compo-
nent.

restrictions, motions can be plotted as trajectories in thefeature space. This is
shown in Figure 3, where a motion starting from sitting, going through standing
up, standing and walking, is plotted along the first two principal components of the
feature space.

The separation by the two principal components is not complete as the data is
inherently high dimensional as can be seen in Figure 4. The figure shows that more
than 10 principal components are needed in order to explain 90% of the variance
in the data.

The fact that many labels can be valid for a motion simultaneously is a chal-
lenge for using the features of the classification as distance measures. For example,
waving hand can be done while walking, sitting or standing. This is visible in the
training samples used for those classes in Figure 5. As ’waving hand’ appears in
several separate clusters, the mean distance between it andother labels does not
reflect the real relations between the labels. Therefore, the overlap between labels
should be analyzed before similarity of the labels.

3 Modeling relations between verbs

In order to have a fine-grained collection of movements, we asked actors to perform
walking, limping and running in various styles. These movements were blended
in three steps including alignment, time warping and interpolation. In time warp-
ing, the motions were synchronized. In the third step, the coordinates of the root
joints were interpolated linearly and the joint rotations were interpolated in a four-
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Figure 4: Variance explained by the
principal components plotted cumu-
latively.
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Figure 5: Training samples with la-
bel ’waving hand’ and other samples
with labels that can be used simul-
taneously plotted along the first two
principal components.

coordinate system [17]. The blending enabled us to have a larger number of vari-
ations of the movements. The people were asked to describe the movement with
one verb or phrase. The task was to label 24 to 124 videos wherethe videos lasted
from 3 to 12 seconds. Each video was portraying a stick figure representation.

We analyzed the questionnaire results where 22 persons had named the move-
ments in Finnish language. We used the self-organizing map (SOM) [18] algo-
rithm to conduct a mapping from the 602-dimensional movement space into a 2-
dimensional display. The movement determines the map structure and structure
of labels is obtained by including them in the input vector with a small weight.
To illustrate the outcome, we chose 12 verbs to be analyzed inmore detail. This
map of labels is shown Fig 6. With one exception, each verb is associated with a
contiguous area on the map. For instance, the verb “walk” is located on the upper
side of the map and the verb “run” on the lower left corner. Fig7 shows exam-
ples of underlying movement features that have determined the organization of the
map. The area for running in Fig 6 coincides with the feature “mean acceleration
of hips” in Fig 7. The union “running” and “jogging” coincides with the distribu-
tion of features “mean absolute velocity of hips” and “mean absolute velocity of
abdomen”.

In many cases, the association between the labels and patterns of movement is
not one-to-one but require consideration of a reasonably large number of features.
On the other hand, the vector space for the associations is much lower in dimen-
sionality than the pixel patterns over time in the original videos. This is thanks
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walk (kävellä) walk around (käveleksiä) run (juosta) jog (hölkätä)
kÃ¤velee_ kÃ¤veleksii_ juoksee_ hÃ¶lkkÃ¤Ã¤_

limp (ontua) limp (nilkuttaa) limp (linkuttaa) limp (klenkata)
ontuu_ nilkuttaa_ linkuttaa_ klenkkaa_

drag (raahautua) jump (hypähdellä) jump (hypellä) jump around (hyppelehtiä)
ontuu_ hypÃ¤htelee_ hyppelee_ hyppelehtii_

Figure 6: The distribution of 12 verbs on a self-organizing map of movements. A
light shade denotes a high value of each verb.

to the motion tracking system that compresses the original very high dimensional
feature space into a large number of meaningful variables. In the general case,
it remains a challenge how to conduct the pattern recognition and dimensionality
reduction in such a way that relevant features are included for the associations. In
many early studies the low-level representations were based on manually encoded
structures (cf., e.g., [14]). In order to develop large scale solutions, the process
should, however, be as automatic as possible. Due to varietyof applications that
may require different kinds of feature sets for same domain,the features extraction
process needs to be task-dependent [19].

4 Conclusions and discussion

We are interested in answering the scientific question of howto enable machines
to have a increasingly common ground with humans for associating language with
perceptual patterns. In the following, we discuss two symbol grounding themes.

4.1 Multimodally grounded language technology

Through multimodally grounded language technology, more robust and correct
manipulation of linguistic data becomes possible, e.g., when resolving ambiguities
or when needing deeper inference. Application areas include building animations
using linguistic instructions and coaching of skills.

What centrally constrains communication is the dissimilarity of the conceptual
systems of the discussants. An important aspect of better understanding of human
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Figure 7: The distribution of 6 features out of 602 on the self-organizing map of
movements. A light shade denotes a high value of each feature.

expression is, we believe, capturing human conceptualizations of the environment
in which the co-operation is to take place. The subjective aspect of interpretation
can be analyzed when the use of symbols is considered in different contexts by a
number of individuals [20].

4.2 Multimodally grounded translation

It has earlier been demonstrated that the association with visual information can
be used even to find parallels between different languages [21]. An analysis of the
similarities in the visual appearance of some object can be used to find a conceptual
link between a word in one and another language. This is analogical to ostensive
definition, based on pointing out examples. In the future, weplan to collect labeled
data in multiple languages. This enables developing a mapping function between
action verbs in different languages based on the common ground.
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