
User Manual for FSenSync

Version 101

(The manual is a work in progress)

30st of January 2019

Klaus Förger, klaus@forger.fi

User Manual for FSenSync 1/30

Table of Contents
 1 Introduction..3
 2 Components and requirements...4
 3 Server..5
 4 Apps..12

 4.1 Common to all apps..12
 4.2 Installer app...13
 4.3 Acceleration (ACC)..14
 4.4 BigClock (CLOCK)..15
 4.5 Eda (EDA)..16
 4.6 Stimuli (STI)...18
 4.7 Cartography (CART)..21
 4.8 Video (VID)..24
 4.9 Video Annotation (VANNO)...25
 4.10 Serial Reader (SERIAL)...27
 4.11 Desktop Player (DEPLAY)...29
 4.12 Synced Processing sketches (PROC)..30

User Manual for FSenSync 2/30

 1 Introduction
The purpose of this manual is to give a concise description of all the FSenSync apps, desktop
programs, and the produced data files. The FSenSync (Förger Analytics Sensor Synchronization) is
a collection of apps running on Android devices and desktop programs which are connected and
temporally synchronized by the FSenSync Server. Three common use cases for FSenSync include
creation of video documentation, running of scientific experiments which use on sensor data and
timed stimuli, and media art/games with data streaming over WLAN.

The main idea of the FSenSync is to provide a way to synchronize clocks robustly over WLAN.
The FSenSync also aims to provide access to data from various sensors in a simple CSV (Comma
Separated Values) format which can be easily downloaded to a computer and analyzed with pretty
much any tool you might want to use. The FSenSync is intentionally build up from separate apps,
because that allows people to use and develop only those parts of FSenSync that they really need.
This approach has enabled very fast prototyping and development of new apps. The approach also
makes it easy to throw away apps that do not work well, thus reducing the accumulation of garbage
in the code base.

The FSenSync is useful as an additional layer on top of sensors as if you are able to measure things
accurate enough you will find that:

1. No two clocks run at the exactly same pace

2. No sensors or output channels are free of lag

The FSenSync was originally developed by Klaus Förger (klaus@forger.fi) for analysis of
improvised dance in the ICI project (funded and run by Paris 8 University and CNRS). Later on it
has been developed further to fit the needs of the Aalto Behavioral Laboratory run by the Aalto
University Department of Neuroscience and Biomedical Engineering.

Most parts of the FSenSync are licensed under GNU GPL v3. Exceptions include the BioHarness
and the Move apps as they contain parts that are not compatible with the GPL license. The
FSenSync Common Libraries (used in Android apps) and FSenSync Desktop Libraries (used in
desktop apps) are licensed under the 2-Clause BSD License to allow development of closed source
apps that can work with the FSenSync.

User Manual for FSenSync 3/30

 2 Components and requirements
The main components you need for running the FSenSync include a computer for running the
server, Android devices for running the apps, a router for WLAN access, and possible Bluetooth
enabled external sensors.

The server has been tested to run well on Linux and Mac. On Windows computers, the server does
run, but there can be some issues related to performance and external Python scripts. The server is
recommended to be run on Java Runtime Environment (JRE) version 8. The server has low
requirements for computing power and memory. Requirements for disk space vary depending on the
type of recordings you make. For example, recorded accelerations need only a few megabytes per
hour, but recorded videos can fill many gigabytes.

The most important requirement for the computer is the stability of the clock. FSenSync is intended
for recordings with millisecond synchronization between recordings, and often the default settings
of a computer involve adjustments to the clock that can mess up timings. Possible reasons for the
jumps in time flow include the computer going into sleep mode and adjusting the time after waking
up, the user setting a new time, switching to daylight saving time, and automatic syncing with a
network time server. Jumps in the server time are seldom an issue after the computer has been
awake for more than a minute. However, if they do happen, the server displays a warning message,
and stops syncing the time for any apps that are currently recording data.

The WLAN router has a great affect on the performance of the FSenSync. The clock
synchronization requires that at least some network packages can be sent with a minimal delay
(under 5ms). It works best if the WLAN is exclusively reserved for FSenSync. Another way to
improve the performance is to not have Internet access on the WLAN as Android devices may start
downloading large updates at random times. Currently, the initial device discovery is built on
broadcast packages, which are usually relayed only to devices connected directly to the same router.

The router does not have to be an external device. Instead, it is possible to use the computer or one
of the Android devices as a router. This may limit the number devices that can connect
simultaneously, but may give lower latencies than even expensive external routers. Some routers
can cause large delays even when there is very low amount of traffic in the network. Another cause
for large latencies can be power saving features on the Android devices. For example, some devices
start delaying part of the network packages when their screen is closed.

The Android devices are the last major component. It is best to use Android version 6 or later. There
is a lot of variation between devices from different manufacturers, so all apps cannot be guaranteed
to run perfectly on all devices. See the FSenSync Device Test Table for more information on
hardware support.

User Manual for FSenSync 4/30

 3 Server
The FSenSync Server is used for controlling the FSenSync apps and desktop programs.

Linux, Mac and Window can be used to run the server, but on Windows the performance can vary.
Java Runtime Environment (JRE) version 8 is recommended. Start the server by clicking on the
exec_Server/FSenSyncServer.jar, or from command-line use: java -jar FSenSyncServer.jar

The server settings are stored in text file ‘settings.txt’ next to the server executable. The first line of
the file is the default experiments folder, which is the folder where the server creates the individual
experiment directories. The folder can also be selected from the server start up window. The second
line is the font scaling. The default value is 1.2. Selecting a larger scaling value may be needed
when using a screen with a very small pixels. The server needs to be restarted before new settings
take effect. The third line is the path to the Anaconda bin folder which should contain Python
executable and FFmpeg.

The ‘Connected apps’ tab allows starting/stopping recordings, refreshing devices (needed if the
network is changed), closing apps, and starting/canceling stimuli. The commands are repeated up to
five times to the selected apps, and then the server gives up. You can press the buttons several times
as the apps ignore repeated commands.

The ‘Connected apps’ tab shows information such as sync accuracy in milliseconds and the app
state. Possible state include: ‘Initial sync’, ‘Waiting for sensors’, ‘Ready’, ‘Recording’, ‘Preparing
play’, ‘Playing’, ‘File transfer’, and ‘Post sync’. State ‘Ready’ means that the app is synced and can
start recording. The ‘Extra info’ button shows further details that can be useful if there are network
problems or you are streaming data in real-time.

The ‘Stimulus file name’ combo box suggests files from the previously uploaded batch.

The ‘Health’ column shows the state of the sensors connected to the Move and the Eda apps. ‘B’
means bad streaming or slow start of streaming, ‘G’ means good streaming, and ‘I’ means initial
state while connecting to the sensor.

User Manual for FSenSync 5/30

Figure 1: The connected app stab

The ‘Streaming’ tab allows starting multicast streaming over LAN for apps that support it.
Examples of receiving and visualizing the streams are included as Processing sketches. Streaming
is currently supported by the Acceleration, Stimulus, Cartography, Eda, VPro, and BioHarness apps.

The ‘Downloads’ tab allows downloading and calculating the final sync of the recorded files. In
most cases, just pressing ‘Download all files’ is enough. The downloaded files are saved into the
‘downloaded’ folder, and the versions with the final sync are put to the ‘synced’ folder. For any
analysis use the files in the ‘synced’ folder.

The ‘Downloads’ tab includes possibility to select files to be downloaded for example based on tags
by using the right click menu. To show the tags, first download only the meta files, and then click
‘Read meta data’.

User Manual for FSenSync 6/30

Figure 2:The Streaming tab

Fi
gure 3:The Downloads tab

The ‘Uploads’ tab allows uploading stimulus files to the Stimulus, the Video Annotation, and the
Cartography apps. Example files are provided in folder ‘setting_and_app_file_examples’. You can
upload multiple files from a folder by selecting all desired files in the file selection window.

The ‘File name on device’ allows renaming a file that is uploaded to an app. This can be used for
starting a different file on different Stimulus apps at the same time. This easily leads to terrible
confusions, and the functionality is hopefully replaced in the future with a proper stimulus
scheduler.

The ‘Tags’ tab allows loading tag files which assign tag to the apps. The tags are put into the meta
files that are created for every recording.

User Manual for FSenSync 7/30

Figure 4: The Uploads tab

Figure 5: The Tags tab

The tags can be shared by apps running on the same device. If shared tags are used they should be
put before any other tags into the tag file.

The ‘Notes’ tab shows the notes created by starting and stopping recordings. New notes can be
created, and old ones edited. The notes are timestamped in the same timeline as all the sensor data.
The notes can be found from ‘[experiment_name]_notes.txt’ file. The notes are backed up
automatically at the start of each recording.

User Manual for FSenSync 8/30

Figure 6: An example tag file

Figure 7:Notes tab

Figure 8: Note file corresponding to the notes shown in Fig. 7

The ‘Scripts’ tab allows running Python script if the Anaconda
(https://www.anaconda.com/download) has been installed and the bin path is set. The final sync and
compositing of videos are done with Python scripts. The Python scripts are not fully supported on
Windows.

The ‘Log’ tab shows all major event and errors which can come from the server itself or be sent
from an app. The same information is also saved to the file ‘debugLog.txt’. Note that the log may
contain network related error messages even when everything runs smoothly.

User Manual for FSenSync 9/30

Figure 9: The Scripts tab and a launched visualization

Figure 10: The Log tab

The files and folders inside the experiment folder include:

• backups/ – The backups of note and tag files

• downloaded/ – The data files downloaded from the apps. These versions contain the clock

drift information that is needed in calculating the final sync. It is best not to edit these as
then you might lose data.

• synced/ – The data files with final sync done. Use these files in analysis of the data. The

files in this folder can be safely edited as they can be recreated from the files in the
‘downloaded folder’ by pressing ‘Re-calculate sync’ button.

• uploadBackups/ – Copies of files uploaded to the apps. Files with identical names are

overwritten by the latest uploaded version. These may be needed when analyzing
experiments done with the Stimulus/Video Annotation/Cartography apps.

• debugLog.txt – Error messages and major events during the recordings

• [experiment_name]_notes.txt – Timestamped notes added by the user and the server

User Manual for FSenSync 10/30

Figure 11: Folder structure of the experiments

• [experiment_name]_tags.txt – The most recent version of tags for the apps

• masterFileList.txt – List of data files known to have existed on the apps. Do NOT edit this.

• .deviceInformation.txt – Ids of the connected app. Do NOT edit this.

• .recordingCount.txt – File that stored the latest recording number. Do NOT edit this.

The server folder (exec_Server) contains:

• apks/ – The installation files of the apps. You can add your own apks here.

• FSenSyncServerLibs/ – Libraries needed by the server

• licenses/ – License and notice files for all the Android apps and the server

• scripts/ – Python scripts that can be launched from the server. You can add you own scripts

here.

• FSenSyncServer.jar – The server executable

• knownLags.txt – Sensor lag information that is used in calculating the final sync. You can

add your own devices to the list. Currently used by the Acceleration app.

• settings.txt – Contains path to the main experiment folder, server user interface multiplier,

and path to the Anaconda bin folder

The server allows automatic clock synchronization between the apps. The sync error between the
clocks is usually just less than 5 milliseconds, and in principle even sub-millisecond accuracy could
be achieved after correcting clock drifts. However, this does not mean that all the data would be
synced as accurately. Each sensor and output channel has their own lags and timing variations
which add to the total error. See information about those in sections of the apps.

User Manual for FSenSync 11/30

Figure 12: Folder structure of the server folder

 4 Apps

 4.1 Common to all apps

All the apps have the same start up screen. Here you can set the physical id string of the device that
is shared between all the apps run on the same device. The string is visible on the server and on the
screens of the apps. Custom tags can also be assigned to the apps. These tags work in the same way
as the tags you can give on the server using a text file.

All the apps create their own data files and also a meta file that contains extra information about the
recording such as the tags, and for example size of the view in the Stimulus app.

User Manual for FSenSync 12/30

Figure 13: Start up screen Figure 14:Physical id Figure 15: Custom tags

 4.2 Installer app
The preferred way to install FSenSync apps on the Android devices is the Installer app. To use it
you need to copy the Installer apk to all the devices, start the server into an experiment, start the
installer app on the devices and press "Start downloads". The devices and the computer running the
server should be connected to the same WLAN for the downloads to work. The installer downloads
all apk files from the "apks" folder that is next to the server executable. After downloading, the
installer checks if the apks are newer then what is already installed, and starts the installations for
the new ones. The user needs to accept all the new installations. The installer prints the status of
each of the apps at the end of the process.

If Installer app needs to update itself, you will need to run the Installer app twice for the whole
process to finish. It is also possible to copy and install all the apks to the devices manually. The apks
compiled at Förger Analytics are signed, thus if you develop your own versions of the apps, you
may need to manually uninstall the old versions before a new version using your signing keys can
be installed.

User Manual for FSenSync 13/30

Figure 16: The installer app

 4.3 Acceleration (ACC)
The Acceleration app records acceleration from the sensor inside in the Android devices. The app
tries to get acceleration at 100 samples per second, but some devices give a lower rate or fake the
rate by repeating the same value many times. See the FSenSync Device Test Table for more
information on hardware support.

The data from the app comes in ACC.csv file that contains:

• Timestamp(milliseconds) – Synced server time

• Xacceleration – Acceleration on the X axis in meters/second^2

• Yacceleration – Acceleration on the Y axis in meters/second^2

• Zacceleration – Acceleration on the Z axis in meters/second^2

The final versions of the data files include a correction for the latency that is read from the
‘knownLags.txt’ from the server folder. The file contains lines with comma separated values such as
‘samsung_GT-N8000,ACC,10’. There the first value is the device type which is the same as in the
meta files on line starting with ‘Device:’. The second value is type of the app which is currently
always ‘ACC’. The third value is the lag of the accelerations in milliseconds that has been measured
in calibration experiments.

The known lag is also taken into account in the timestamps of data streamed over OSC protocol.
You can find an example of receiving the streamed data in the ‘FSS_visualization_acceleration’
Processing sketch.

User Manual for FSenSync 14/30

Figure 17: The
Acceleration app

 4.4 BigClock (CLOCK)
The BigClock app displays the synced server time on the screen. Below the timestamp, there is a
second counter, and a decisecond counter. The app can be used for rough syncing of video cameras
that do not have FSenSync integration. Note that the visualization has additional lag of a few tens of
milliseconds caused by the lag and the refresh rate screen of the screen. The app does not produce
data files.

User Manual for FSenSync 15/30

Figure 18: The BigClock app

 4.5 Eda (EDA)
The Eda app allows synchronizing data from the Moodmetric rings (http://www.moodmetric.com/).
The ‘Stop/Start scan’ button allows finding rings with a Bluetooth scan. The ‘Select rings’ allows
selecting rings that should be connected to the device. The app allows giving individual tags to
rings attached to it. The tags are saved in the meta files of the recordings.

The data file name from the Eda app includes the Mac address as in
‘experiment_001_003_D9BA2247B3C8_EDA.csv’. The file contains:

• Timestamp(milliseconds)

• Status – Status value provided by the ring

• MoodNumber – The long term value used by the Moodmetric app

• SkinResistance – The current skin resistance

• Xacceleration – Acceleration on the X axis in meters/second^2

• Yacceleration – Acceleration on the Y axis in meters/second^2

• Zacceleration – Acceleration on the Z axis in meters/second^2

User Manual for FSenSync 16/30

Figure 19: The Eda and and rings Figure 20: Ring selection

http://www.moodmetric.com/

The Eda gives data at the rate of three samples per second. The synchronization accuracy of the app
may vary as the sync is based on logging the arrival times of the data packets instead of a time
query/response protocol. Thus, the time between samples can vary, and samples may also be lost
due to a bad Bluetooth connection. To get data reliably, the rings should be no more than one or two
meters from the Android device.

The Eda app supports OSC streaming of the data. See ‘FSS_visualization_eda’ Processing sketch
for an example of receiving the data.

User Manual for FSenSync 17/30

Figure 22: Tags to individual rings Figure 21: Tags visible on the screen

 4.6 Stimuli (STI)
The Stimulus app allows playing sound, image, and video stimuli on Android devices. The app also
records screen touches. The stimulus files must first be uploaded to the device on the ‘Uploads’ tab
on the Server. Next, a file can be selected on the ‘Connected apps’ tab, and the the apps will play it
three seconds after the ‘Start stimuli’ button has been pressed. Several files can be played in
succesion during one recording, and the play progress of those will be logged in the same file. To
separate the logs of different plays, the recording must be stopped between the plays.

Supported sound file formats include flac, wav, mp3, and acc. Supported image file formats include
png, jpg, bmp, and gif. Supported video file formats include mp4, 3gp, webm, and mkv. To play a
sound and simultaneously show a background image, a file list can be used as in the example
‘setting_and_app_file_examples/stimulus_examples/stimulus_file_list.txt’. The images are
stretched to fit the whole view area, and videos have the maximum size while preserving the aspect
ratio. To get full screen videos, use the same resolution that is shown on the screen of the app.

User Manual for FSenSync 18/30

Figure 24: The Stimulus app showing an error

Figure 23: A example of a file list that allows playing a sound while
simultaneously showing an image

The Stimulus app produces the following files:

• meta file

◦ View width – Width of the view area in pixels

◦ View height – Height of the view area in pixels

• STI.csv – Log of the play progress

◦ Timestamp(milliseconds) – Synced server time

◦ EventType – Can be ‘started, ‘playing’, ‘stopped’, or ‘cancelled’

◦ PlayProgress(milliseconds) – The progress of the in milliseconds from the start

◦ FileName – Name of the stimulus file

◦ ImageName – Name of the background image

• TOUCH.csv – Screen touches during the recordings

◦ Timestamp(milliseconds) – Synced server time

◦ TouchIndex – For multitouch: ‘0’ for the first finger to touch the screen, ‘1’ for the

second, etc.

◦ Xcoordinate – X coordinate in pixels

◦ Ycoordinate – Y coordinate in pixels

◦ UpDownEvent – ‘-1’ for finger down, ‘0’ for finger move, ‘1’ for finger up

While the Stimulus app tries to start the play at the same time on all the devices, there can be up to
100 millisecond offsets in starts of the play. Also, the latencies of touch screens may vary and they

User Manual for FSenSync 19/30

Figure 25:Stimulus app when ‘Traces’ setting has been sent from
the ‘Uploads’ tab

are not currently compensated in the recordings. Thus, to compare the touch times as accurately as
possible, all the participant should use the same model of the Android device.

The touch data can be streamed over OSC. See ‘FSS_visualization_touches’ Processing sketch for
an example of receiving the data.

When analyzing the data, the best approximation of the play progress can be achieved by taking the
PlayProgress values, removing the values from the first and the last second, fitting a line to the data,
and by interpolating the play progress values for the needed timestamps. This usually gives the best
results as the start and the end of the logging may have inaccurate values due to, for example, a
stuttering start of play. Also, the logged values may have a few milliseconds of noise caused by the
way the Android MediaPlayer reports the play progress.

User Manual for FSenSync 20/30

 4.7 Cartography (CART)
The Cartography app allows creating questionnaires where the participants move images on the
screen of an Android device. The idea is that participants are instructed to use the absolute or the
relative positions of the images in conveying information.

The input images for the Cartography are uploaded from the ‘Uploads’ tab of the Server in the same
way as the files for the Stimulus app. The experiments are begun by starting a Cartography
definition file using the ‘Start stimuli’ button in the ‘Connected apps’ tab of the Server. See example
files in folder ‘setting_and_app_file_examples/cartography_example’.

A Cartography definition file is a CSV file containing on each line the data for one trial:

• BackgroundImage – The name of the backgroud image file

• OverlapAllowed – true/false, whether images can overlap

• SelfEnded – true/false, whether the trial is ended by pressing ‘OK’ button

• MultiTouch – true/false, whether multitouch is allowed

• TrialDuration – Duration of the trial in milliseconds, if it is not self ended

• BreakBeforeTrial – Duration of the pause between the trials in milliseconds. Use 1000 to

have enough time to load the images of the next trial

• ImgScale – Scale of the images. 1.0 mean 100% of the screen size, 0.1 means 10% of the

screen, etc.

• Img0... – Name of the image file. Tens of image files can be added

User Manual for FSenSync 21/30

Figure 26: Cartography app running the ‘Cool or Hot’
experiment with images of toys

The Cartography app produces the following files:

• meta file

◦ View width – Width of the view area in pixels

◦ View height – Height of the viewarea in pixels

• TOUCH.csv – Screen touches during the recordings

◦ Timestamp(milliseconds) – Synced server time

◦ TouchIndex – For multitouch: ‘0’ for the first finger to touch the screen, ‘1’ for the

second, etc.

◦ Xcoordinate – X coordinate in pixels

◦ Ycoordinate – Y coordinate in pixels

◦ UpDownEvent – ‘-1’ for finger down, ‘0’ for finger move, ‘1’ for finger up

User Manual for FSenSync 22/30

Figure 28: Cartography app showing an error message

Figure 27: An example Cartography definition file

• CART.csv

◦ Timestamp(milliseconds) – Synced server time

◦ ImgIndex – Number of the image on the line in the Cartography definition file

◦ CenterX – X coordinate for the center of image after a move or initial/ending position.

◦ CenterY – Y coordinate for the center of image after a move or initial/ending position.

◦ Width – Image width on the screen in pixels

◦ Height – Image height on the screen in pixels

◦ TouchIndex – This is meant for finding the corresponding touch data from the

TOUCH.csv file when multitouch is enabled. The TouchIndex in the CART file is the
same as in the TouchIndex in the TOUCH file. For the TrialPhase 0 and 1, the
TouchIndex is always -1 as the initial and final positions of the images do not have
corresponding touch data.

◦ TrialPhase – 0 means initial randomly assigned positions. 1 means a new position after

user has moved an image. 2 means final positions after all the moves when the trial has
ended.

◦ TrialNum – This correspond to the line number in the original definition file. The first

trial is number 0.

The latencies of touch screens may vary, and they are not currently compensated in the recordings.
Thus, to compare the touch times as accurately as possible, all the participant should use the same
model of the Android device.

User Manual for FSenSync 23/30

 4.8 Video (VID)
The Video app allows recording videos that are synced with +-1 frame accuracy with all other
FSenSync data. The final synchronization and compositing is done with the Python scripts
‘composite_videos_with_ffmpeg.py’ and ‘composite_videos_with_sounds.py’. See also the
example ‘composite_videos_acceleration.py’ that combines accelerometer visualization with
videos.

The frame rate allowed by the devices varies. See the FSenSync Device Test Table for more
information on hardware support.

The Video produces VID.csv files containing timing information, and mp4 files containing the
video data. The Python scripts produce mp4 files stored in the ‘synced’ folder that have the starting
timestamp in the file name.

Most Android devices have a 4 gigabyte file size limit. This means that recording very long videos
is not possible in one take. It can be practical to stop the video recording when the data is not
needed as transferring large files may be slow, and Android devices have limited amount of storage
space. The fastest way to transfer large files is usually to download them over a 5GHz Wifi.

User Manual for FSenSync 24/30

Figure 29: The Video app

 4.9 Video Annotation (VANNO)
The Video Annotation app allows participants to play videos and annotate them in the same style as
in the Stimulus app with a background image. The files are uploaded from the Server in the same
way as in the Stimulus app.

Examples of Video Annotation definition files can be found from folder
‘setting_and_app_file_examples/video_annotation_examples’.

User Manual for FSenSync 25/30

Figure 30: Example of a basic video annotation definition file

User Manual for FSenSync 26/30

Figure 33: Video Annotation app Figure 32: Video Annotation app
showing an error

Figure 31: An example of a complex video annotation definition file with suggested
annotation times, and video chosen with tags of the apps

 4.10 Serial Reader (SERIAL)
The Serial Reader app runs on desktop computers, and allows recording triggers sent over serial
port. To find the correct port easily, first start the app, and after that connect the USB-to-serial cable.
Windows, Linux and Mac computers are supported by the app. USB-to-serial cables may require
installing drivers manually at least on Macs.

The settings supported by the app are: Rate: 9600 bauds, Parity: None, Data bits: 8, Stop bits: 1

As the app receives single bytes, all the settings do not have an actual effect.

User Manual for FSenSync 27/30

Figure 34: The Serial Reader app

Figure 35: The Serial Reader can read data for
example from an Arduino or another computer over
USB-to-Serial -> null modem -> Serial-to-USB cables

The data is stored in a SERIAL.csv file:

• Timestamp(milliseconds) – Synced server time

• SerialEvent – Value of the received byte as an integer

User Manual for FSenSync 28/30

 4.11 Desktop Player (DEPLAY)
The Desktop Player app allows playing sound and video stimuli on desktop computers. The use of
the app on the Server is similar to the use of the Stimulus app.

The DesktopPlayer app requires native GStreamer libraries that work on Linux simply by installing
GStreamer 1.x for your distribution. For Windows and Mac, the libraries should be bundled (in the
same way as in the Processing Video library), but they are not currently included due to licensing
issues (the source code is not easily available).

The resulting DEPLAY.csv file contains:

• Timestamp(milliseconds) – Synced server time

• EventType – Can be ‘started, ‘playing’, ‘stopped’, or ‘cancelled’

• PlayProgress(milliseconds) – The progress of the in milliseconds from the start

• FileName – Name of the stimulus file

The app may not play all videos with rotation meta information correctly due to GStreamer issues.
Use the ‘r’ key on keyboard to fix the rotation.

When analyzing the data, the best approximation of the play progress can be achieved by taking the
PlayProgress values, removing the values from the first and the last second, fitting a line to the data,
and by interpolating the play progress values for the needed timestamps.

User Manual for FSenSync 29/30

Figure 36: Selection of the view type

Figure 37: The Desktop Player app

 4.12 Synced Processing sketches (PROC)
The FSenSync Desktop Library can be used in Processing sketches for getting synced timestamps,
and logging/uploading data files to the FSenSync Server. See examples in
‘sketchbook/FSenSyncRecorderExample’ and ‘sketchbook/SimpleSyncExample’.

The FSenSync Processing sketches also include several examples of how to receive streamed data
from the FSenSync apps.

User Manual for FSenSync 30/30

	1 Introduction
	2 Components and requirements
	3 Server
	4 Apps
	4.1 Common to all apps
	4.2 Installer app
	4.3 Acceleration (ACC)
	4.4 BigClock (CLOCK)
	4.5 Eda (EDA)
	4.6 Stimuli (STI)
	4.7 Cartography (CART)
	4.8 Video (VID)
	4.9 Video Annotation (VANNO)
	4.10 Serial Reader (SERIAL)
	4.11 Desktop Player (DEPLAY)
	4.12 Synced Processing sketches (PROC)

